Indian Statistical Institute, Bangalore

B. Math. First Year, Second Semester Probability Theory-II Back Paper Examination

Duration: 3 hours Maximum marks: 100 Date: To be announced

- 1. Let X,Y be independent identically distributed random variables having uniform distribution in $\{1,2,3,4\}$. Take Z=X-Y and W=X+Y. Find the joint distribution and marginals of Z,W. Find the conditional distribution of W given Z=1.
- 2. Let B, C be two independent random variables uniformly distributed in [-1, +1]. Compute the probability that the roots of the polynomial $p(x) = x^2 + Bx + C$ are real. [15]
- 3. Let U,V be independent random variables each having uniform distribution in [0,2]. Compute (i) P(|U-V|<1); (ii) P(U+V=3); (iii) $P(V \ge U|U \le 1)$.
- 4. Let X_1, X_2 be independent N(0,1) distributed random variables. Find the joint density of $(X_1 + X_2, 2X_2)$. Now find the marginal density of $X_1 + X_2$. [15]
- 5. Let $\{X_n\}_{n\geq 1}$ be a sequence of random variables converging in distribution to a real number c. Show that $\{X_n\}_{n\geq 1}$ converges in probability to c. [20]
- 6. State Central Limit Theorem (CLT) for i.i.d. random variables with finite non-zero variance. Use this theorem and statistical tables to estimate P(990 < S < 1020) where S has binomial distribution with parameters $(000, \frac{1}{2})$.